MapReduce切片(Split)和分区(Partitioner)
MapReduce中,分片、分区、排序和分组(Group)的关系图:
分片大小
对于HDFS中存储的一个文件,要进行Map处理前,需要将它切分成多个块,才能分配给不同的MapTask去执行。 分片的数量等于启动的MapTask的数量。默认情况下,分片的大小就是HDFS的blockSize。
Map阶段的对数据文件的切片,使用如下判断逻辑:
protected long computeSplitSize(long blockSize, long minSize,
long maxSize) {
return Math.max(minSize, Math.min(maxSize, blockSize));
}
blockSize:默认大小是128M(dfs.blocksize)
minSize:默认是1byte(mapreduce.input.fileinputformat.split.minsize):
maxSize:默认值是Long.MaxValue(mapreduce.input.fileinputformat.split.minsize)
由此可以看出两个可以自定义的值(minSize和maxSize)与blockSize之间的关系如下:
当blockSize位于minSize和maxSize 之间时,认blockSize:
当maxSize小于blockSize时,认maxSize:
当minSize大于blockSize时,认minSize:
另外一个极端的情况,maxSize小于minSize时,认minsize,可以理解为minSize的优先级比maxSize大:
实际使用中,建议不要去修改maxSize,通过调整minSize(使他大于blockSize)就可以设定分片(Split)的大小了。
总之通过minSize和maxSize的来设置切片大小,使之在blockSize的上下自由调整。
什么时候需要调整分片的大小
首先要明白,HDFS的分块其实是指HDFS在存储文件时的一个参数。而这里分片的大小是为了业务逻辑用的。分片的大小直接影响到MapTask的数量,你可以根据实际的业务需求来调整分片的大小。
分区
在Reduce过程中,可以根据实际需求(比如按某个维度进行归档,类似于数据库的分组),把Map完的数据Reduce到不同的文件中。分区的设置需要与ReduceTaskNum配合使用。比如想要得到5个分区的数据结果。那么就得设置5个ReduceTask。
自定义Partitioner:
public class URLResponseTimePartitioner extends Partitioner<Text, LongWritable>{
@Override
public int getPartition(Text key, LongWritable value, int numPartitions) {
String accessPath = key.toString();
if(accessPath.endsWith(".do")) {
return 0;
}
return 1;
}
}
然后可以在job中设置partitioner:
job.setPartitionerClass(URLResponseTimePartitioner.class);
//URLResponseTimePartitioner returns 1 or 0,so num of reduce task must be 2
job.setNumReduceTasks(2);
两个分区会产生两个最终结果文件:
[root@centos01 ~]# hadoop fs -ls /access/log/response-time
17/12/19 14:53:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 3 items
-rw-r--r-- 2 root supergroup 0 2017-12-19 14:49 /access/log/response-time/_SUCCESS
-rw-r--r-- 2 root supergroup 7769 2017-12-19 14:49 /access/log/response-time/part-r-00000
-rw-r--r-- 2 root supergroup 18183 2017-12-19 14:49 /access/log/response-time/part-r-00001
其中00000中存放着.do的统计结果,00001则存放其他访问路径的统计结果。
[root@centos01 ~]# hadoop fs -cat /access/log/response-time/part-r-00001 |more
17/12/19 14:55:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
//MyAdmin/scripts/setup.php 3857
//css/console.css 356
//css/result_html.css 628
//images/male.png 268
//js/tooltipster/css/plugins/tooltipster/sideTip/themes/tooltipster-sideTip-borderless.min.css 1806
//js/tooltipster/css/tooltipster.bundle.min.css 6495
//myadmin/scripts/setup.php 3857
//phpMyAdmin/scripts/setup.php 3857
//phpmyadmin/scripts/setup.php 3857
//pma/scripts/setup.php 3857
/404/search_children.js 3827
/Dashboard.action 3877
/Homepage.action 3877
/My97DatePicker/WdatePicker.js 9371
/My97DatePicker/calendar.js 22044
/My97DatePicker/lang/zh-cn.js 1089
/My97DatePicker/skin/WdatePicker.css 158
/My97DatePicker/skin/default/datepicker.css 3486
/My97DatePicker/skin/default/img.gif 475
排序
要想最终结果中按某个特性排序,则需要在Map阶段,通过Key的排序来实现。
例如,想让上述平均响应时间的统计结果按降序排列,实现如下:
关键就在于这个用于OUTKey的Bean。它实现了Comparable接口,所以输出的结果就是按compareTo的结果有序。
由于这个类会作为Key,所以它的equals方法很重要,会作为,需要按实际情况重写。这里重写的逻辑是url相等则表示是同一个Key。(虽然Key相同的情况其实没有,因为之前的responseTime统计结果已经把url做了group,但是这里还是要注意有这么个逻辑。)
排序并不是依赖于key的equals!
public class URLResponseTime implements WritableComparable<URLResponseTime>{
String url;
long avgResponseTime;
public void write(DataOutput out) throws IOException {
out.writeUTF(url);
out.writeLong(avgResponseTime);
}
public void readFields(DataInput in) throws IOException {
this.url = in.readUTF();
this.avgResponseTime = in.readLong();
}
public int compareTo(URLResponseTime urt) {
return this.avgResponseTime > urt.avgResponseTime ? -1 : 1;
}
public String getUrl() {
return url;
}
public void setUrl(String url) {
this.url = url;
}
public long getAvgResponseTime() {
return avgResponseTime;
}
public void setAvgResponseTime(long avgResponseTime) {
this.avgResponseTime = avgResponseTime;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + ((url == null) ? 0 : url.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
URLResponseTime other = (URLResponseTime) obj;
if (url == null) {
if (other.url != null)
return false;
} else if (!url.equals(other.url))
return false;
return true;
}
@Override
public String toString() {
return url;
}
}
然后就简单了,在Map和Reduce分别执行简单的写和读操作就行了,没有更多的处理,依赖于Hadoop MapReduce框架自身的特点就实现了排序:
public class URLResponseTimeSortMapper extends Mapper<LongWritable,Text,URLResponseTime,LongWritable>{
//make a member property to avoid new instance every time when map function invoked.
URLResponseTime key = new URLResponseTime();
LongWritable value = new LongWritable();
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] logs = line.split("\t");
String url = logs[0];
String responseTimeStr = logs[1];
long responseTime = Long.parseLong(responseTimeStr);
this.key.setUrl(url);
this.key.setAvgResponseTime(responseTime);
this.value.set(responseTime);
context.write(this.key,this.value);
}
}
public class URLResponseTimeSortReducer extends Reducer<URLResponseTime, LongWritable, URLResponseTime, LongWritable> {
@Override
protected void reduce(URLResponseTime key, Iterable<LongWritable> values,
Context ctx) throws IOException, InterruptedException {
ctx.write(key, values.iterator().next());
}
}